Wrapid Sleeve[™]

One-piece protective sleeve with pre-attached closure

The Canusa Wrapid Sleeve[™] is a one-piece wraparound sleeve designed for corrosion protection of buried and exposed steel pipelines. Wrapid Sleeve consists of a crosslinked polyolefin backing, coated with a protective heat sensitive adhesive which effectively bonds to steel substrates and common pipeline coatings including polyethylene and fusion bonded epoxy.

Rapid & Reliable Installation

- One-piece construction that incorporates a preattached closure strip as part of the sleeve
- Factory applied closure for guick and reliable field installation
- Available with a yellow polyethylene backing that incorporates a thermochromic indicator to further optimize installation

Long-Term Corrosion Protection

- Excellent resistance to cathodic disbondment resulting in effective long term corrosion protection
- · High performance crosslinked backing, in combination with a broad range of adhesives, can be engineered for regular or high stress environments

Saves Time & Money

- With Wrapid Sleeve's unique construction, less time is required handling, positioning and installing separate closures
- No additional costly primers are required. This minimizes installation time and labour costs while promoting high production rates

Applications

Water Pipelines

Wrapid Sleeve™

One-piece protective sleeve with pre-attached closure

KLC

KLS

KLO

The product information shown here is intended as a guide for standard products.

Consult your Canusa representative for specific projects or unique applications.

and the second	- Martin	Constant State	ile a
	and the second		
-	-		1º
-	1 in	and A	103.20
168 H Colonia			No. of the lot of the

Canusa-CPS A division of ShawCor Ltd.

Characteristics		КТС	KTS	КТО	NLA
Pipeline Operating Temp.		Up to 35°C (95°F)	Up to 40°C (104°F)	Up to 50°C (122°F)	Up to 55°C (131°F)
Minimum Installation Temp.		60°C (140°F)	65°C (150°F)	75°C (167°F)	60°C (140°F)
Mainline Coating Compatibility		PE, PP, FBE, PU, Coal, Tar, Bitumen	PE, PP, FBE, PU, Coal, Tar, Bitumen	PE, PP, FBE, PU, Coal, Tar, Bitumen	PE, FBE
Adhesive Properties	Test Method				
Softening Point	ASTM E28	90°C	77°C	102°C	72°C
Lap Shear	DIN 30 672 M	30 N/cm ²	40 N/cm ²	40 N/cm ²	60 N/cm ²
Backing Properties					
Tensile Strength	ASTM D638	24 MPa	24 MPa	24 MPa	24 MPa
Elongation	ASTM D638	700%	700%	700%	700%
Hardness	ASTM D2240	50 Shore D	50 Shore D	50 Shore D	50 Shore D
Volume Resistivity	ASTM D257	10 ¹⁷ ohm-cm	10 ¹⁷ ohm-cm	10 ¹⁷ ohm-cm	10 ¹⁷ ohm-cm
Sleeve Properties					
Adhesion Strength @ 23°C	DIN 30 672	50 N/cm	70 N/cm	65 N/cm	35 N/cm**
Impact Resistance*	DIN 30 672	pass	pass	pass	pass
Indentation Resistance*	DIN 30 672	pass	pass	pass	pass
Cathodic Disbondment @ 23°C, 28 days⁺	ASTM G8	6 mm rad	8 mm rad	8 mm rad	13 mm rad
Low Temp. Flexibility	ASTM D2671C	5°C	-20°C	-14°C	-32°C
Thickness		т	l	_	S
Backing (nominal thickness as supplied)		0.6mm (0.025")	0.9mm	(0.035")	1.1mm (0.045")
Adhesive (nominal thickness as supplied) [KLC/KTC, KLS/KTS, KLO/KTO]		1.1mm (0.045")	1.4mm	(0.055")	1.5mm (0.060")
Adhesive (nominal thickness as supplied) [KLA]		1.0mm (0.040")	1.3mm	(0.050")	1.5mm (0.060")

* Denotes L sleeve thickness

Sleeve Operating

⁺ Based on application onto Sa 2 1/2 blasted steel pipe

Since 1967, Canusa-CPS has been a leading developer and manufacturer of specialty pipeline coatings for the sealing and corrosion protection of pipeline joints and other substrates. Canusa-CPS high performance products are manufactured to the highest quality standards and are available in a number of configurations to accommodate many specific project applications.

Canusa-CPS is registered to ISO 9001:2008

Canusa warrants that the product conforms to its chemical and physical description and is appropriate for the use stated on the product data sheet when used in compliance with Canusa's written instructions. Since many installation factors are beyond our control, the user shall determine the suitability of the products for the intended use and assume all risks and liabilities in connection therewith. Canusa's liability is stated in the standard terms and conditions of sale. Canusa makes no other warranty either expressed or implied. All information contained in this data sheet is to be used as a guide and is subject to change without notice. This data sheet supersedes all previous data sheets on this product. E&OE

PDS_Wrapid_Sleeve_rev020

LIBERTY SALES & DISTRIBUTION Hatfield & Washington, PA

Ph: (877) 373-0118 Fx: (888) 850-3787 sales@libertysales.net www.libertysales.net

